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The effect of air pollution 
on the transcriptomics 
of the immune response 
to respiratory infection
Daniel P. Croft1,2*, David S. Burton3, David J. Nagel1,2, Soumyaroop Bhattacharya2,4, 
Ann R. Falsey5, Steve N. Georas1,2, Philip K. Hopke2,6,7, Carl J. Johnston2,4, 
R. Matthew Kottmann1,2, Augusto A. Litonjua1,2, Thomas J. Mariani2,4,8, David Q. Rich1,2,4,6, 
Kelly Thevenet‑Morrison6, Sally W. Thurston2,3, Mark J. Utell1,2 & Matthew N. McCall2,3

Combustion related particulate matter air pollution (PM) is associated with an increased risk of 
respiratory infections in adults. The exact mechanism underlying this association has not been 
determined. We hypothesized that increased concentrations of combustion related PM would result 
in dysregulation of the innate immune system. This epidemiological study includes 111 adult patients 
hospitalized with respiratory infections who underwent transcriptional analysis of their peripheral 
blood. We examined the association between gene expression at the time of hospitalization and 
ambient measurements of particulate air pollutants in the 28 days prior to hospitalization. For 
each pollutant and time lag, gene-specific linear models adjusting for infection type were fit using 
LIMMA (Linear Models For Microarray Data), and pathway/gene set analyses were performed using 
the CAMERA (Correlation Adjusted Mean Rank) program. Comparing patients with viral and/or 
bacterial infection, the expression patterns associated with air pollution exposure differed. Adjusting 
for the type of infection, increased concentrations of Delta-C (a marker of biomass smoke) and 
other PM were associated with upregulation of iron homeostasis and protein folding. Increased 
concentrations of black carbon (BC) were associated with upregulation of viral related gene pathways 
and downregulation of pathways related to antigen presentation. The pollutant/pathway associations 
differed by lag time and by type of infection. This study suggests that the effect of air pollution on the 
pathogenesis of respiratory infection may be pollutant, timing, and infection specific.

Respiratory infections are a leading cause of adult morbidity and mortality in the United States1. Short-term 
increases in ambient fine particulate air pollution (≤ 2.5 µm in diameter; PM2.5) concentrations have been associ-
ated with increased emergency department (ED) visits for influenza and culture negative pneumonia in adults2. 
Studies of adults in the USA have also observed associations between acute increases in air pollution concen-
trations and an increased risk of healthcare encounters for respiratory viral infection (RVI) or other lower res-
piratory tract infections (LRTI), including respiratory bacterial infection (RBI)3–6. With over 90% of the world 
breathing unhealthy air7, and large health care burden of respiratory infections8, understanding the mechanisms 
underlying air pollution effects on the innate immune response to respiratory infections is crucial.

The association between the inflammation caused by air pollution and disruption of the lung’s innate immune 
system, including epithelial barrier disruption, macrophage function, and protein/cytokine response, is typi-
cally studied via in vitro human cell and in vivo rodent models9–19. Although the majority of studies suggest that 
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different air pollution components might predispose patients to RVI or RBI by multiple mechanisms, laboratory-
based studies are generally limited to inbred mouse strains and/or only a single pollutant or a single category of 
pollution (traffic pollution), and do not fully capitulate complex events occurring in naturally exposed humans. 
Studying natural exposures also helps characterize pollutant effects that controlled exposure studies may miss. 
Epidemiologic studies allow examination of health responses to single pollutants as they occur within a pollut-
ant mixture.

By examining the association between multiple pollutants and the transcriptional profiles of the peripheral 
blood of patients with respiratory infection we can better understand what specific gene pathways may be driving 
the relationship between specific particulate pollution and different types of infection including RVI and RBI. 
Studying respiratory infection types in aggregate can give important insight into potential shared mechanisms 
between the effects of air pollution on respiratory infection in general while studying infections individually 
may elucidate infections specific mechanisms applicable to only RVI or RBI. Furthermore, studying the poten-
tial mechanisms of the effects of air pollution on respiratory infection may help design potential risk reduction 
strategies (e.g. anti-inflammatory treatment) for patients exposed to air pollution during periods of high rates 
of respiratory infection.

Although most literature focuses on PM2.5 and not its constituents, our prior source-specific study in NY State 
observed associations between combustion related constituents of PM2.5 and ED visits for influenza20. Among 
the PM2.5 constituent sources, we hypothesized that ambient combustion sources including traffic related air 
pollution (black carbon) and biomass burning (Delta-C) would be associated with dysregulation of key gene 
pathways within the immune response to respiratory infection. In this study, we focused on the gene expression 
patterns in patients with RVI as the primary outcome of interest associated with ambient air pollution. We also 
performed the same analysis in patients with RBI and combined viral and bacterial infection. First, we highlighted 
the patterns in gene expression across these three infection groups. Next, we analyzed the associations between 
air pollution concentrations and gene expression in all types of respiratory infection combined. We then analyzed 
the gene pathways associated with increases in air pollution concentrations in the aggregate group and visual-
ized patterns of gene expression in key pathways for RVI, RBI and combined infection individually (Fig. 1). We 
report several associations between gene expression and air pollution exposure including several gene pathways 
relevant to respiratory infections, including immunity, protein folding and iron homeostasis.

Results
Patient characteristics.  The majority of participants were white (76%), female (58%), and older, with 
median age range of 58–61 years old (Table 1). The majority of participants had viral infection (n = 66) and 
fewer patients had bacterial infection (n = 20) or coinfection (n = 25). The most common viruses included influ-
enza (n = 22), respiratory syncytial virus (n = 19) and the most common bacterial infection was Streptococcus 
pneumonia (n = 12) (Supplemental Table S1 online). Over 90% of patients lived at home and the most common 
comorbidities included diabetes (34%), COPD (38%) and obesity (39%). Forty percent of participants were 
active smokers, with the lowest proportion of smokers in the viral infection group (35%) and the largest propor-
tion of smokers in the co-infection group (52%). Inhaled steroid use was most prevalent within the bacterial 
infection group (65%) and least prevalent in the viral infection group (30%). Home oxygen use was most preva-
lent in the bacterial infection group (30%) and less common in the viral (15%) and combined infection groups 
12%. Air pollution distributions for Rochester, NY during the same season as the hospitalizations are reported 
in Table 2. Although Rochester, NY is a medium-sized city, the average PM2.5 concentration is well below the 
EPA 24 hour fine particle standard of 35 μg/m321. Moderate correlations (0.5 to 0.7) were observed between the 
pollutants (Supplemental Fig. S1 online).

Figure 1.   Study overview [Created with BioRender.com].
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Table 1.   Patient characteristics. *Age and BMI are Median (interquartile range).

Variable Descriptions
Overall 
N = 111 (%) Viral N = 66 (%) Bacterial N = 20 (%) Coinfection N = 25 (%)

Age 61.1 (26.1)* 59.7 (26.7)* 71.6 (25.9)* 59.6 (17.9)*

Gender
Female 64 (57.7) 41 (62.1) 10 (50) 13 (52)

Male 47 (42.3) 25 (37.9) 10 (50) 12 (48)

Race

Black 25 (22.5) 11 (16.7) 7 (35) 7 (28)

Other 2 (1.8) 1 (1.5) 1 (4)

White 84 (75.7) 54 (81.8) 13 (65) 17 (68)

Ethnicity
Hispanic 17 (15.3) 10 (15.2) 2 (10) 5 (20)

Non-Hispanic 94 (84.7) 56 (84.8) 18 (90) 20 (80)

Type of Residence Home 103 (92.8) 61 (92.4) 19 (95) 23 (92)

Diabetes  Diabetes 38 (34.2) 24 (36.4) 6 (30) 8 (32)

CHF Congestive heart failure 19 (17.1) 12(18.2) 3 (15) 4 (16)

COPD COPD 42 (37.8) 22 (33.3) 9 (45) 11 (44)

CRF Chronic renal failure  1 (0.9) 1 (4)

BMI 27.4 (13)* 27.2 (14.6)* 27.9 (11.1)* 27.4 (9.8)*

BMI category

Underweight 4 (4.6) 1 (2) 2 (11.8) 1 (4.8)

Normal 31 (35.6) 18 (36.7) 5 (29.4) 8 (38.1)

Overweight 18 (20.7) 11 (22.4) 3 (17.6) 4 (19)

Obese 34 (39.1) 19 (38.8) 7 (41.2) 8 (38.1)

Smoking status

Never 30 (27) 19 (28.8) 6 (30) 5 (20)

Active (within 3 months) 44 (39.6) 23 (34.8) 8 (40) 13 (52)

Past 37 (33.3) 24 (36.4) 6 (30) 7 (28)

Oral Steroid
Yes 12 (10.9) 9 (13.8) 1 (5) 2 (8)

No 98 (89.1) 56 (86.2) 19 (95) 23 (92)

Inhaled Steroid
Yes 47(42.3) 20 (30.3) 13 (65) 14 (56)

No 64 (57.7) 46 (69.7) 7 (35) 11 (44)

Home O2 Yes 19 (17.1) 10 (15.2) 6 (30) 3 (12)

Flu vaccine Yes 66 (62.3) 39 (61.9) 16 (84.2) 11 (45.8)

Pneumonia vaccine Yes 56 (58.9) 32 (60.4) 13 (72.2) 11 (45.8)

Table 2.   Ambient air pollution concentrations for all participants, at multiple lag times, stratified by infection 
type.

Pollutant
Lag period prior to 
diagnosis Overall mean (Std) Viral mean (Std) Bacterial mean (Std)

Coinfection mean 
(Std)

AMP

0 to 6 days 873.22 (308.70) 902.39 (274.54) 827.48 (483.06) 832.53 (134.39)

7 to 13 days 1008.29 (323) 984.63 (307.87) 1081.82 (381.58) 1019.45 (327.68)

14 to 20 days 1142.28 (412.83) 1156.35 (457.73) 1156.7 (422.28) 1095.93 (276.88)

21 to 27 days 1087.91 (451.2) 1116.54 (472.79) 1013.61 (483.29) 1064.06 (378.11)

Black carbon

0 to 6 days 0.52 (0.21) 0.52 (0.18) 0.52 (0.31) 0.51 (0.16)

7 to 13 days 0.53 (0.16) 0.49 (0.13) 0.6 (0.19) 0.57 (0.18)

14 to 20 days 0.56 (0.18) 0.56 (0.17) 0.54 (0.24) 0.57 (0.15)

21 to 27 days 0.55(  0.21) 0.54 (0.2) 0.52 (0.21) 0.62 (0.22)

Delta-C

0 to 6 days 0.19 (0.11) 0.19 (0.11) 0.18 (0.11) 0.21 (0.09)

7 to 13 days 0.21 (0.09) 0.18 (0.08) 0.24 (0.1) 0.26 (0.1)

14 to 20 days 0.22 (0.10) 0.22 (0.09) 0.23 (0.13) 0.23 (0.09)

21 to 27 days 0.24 (0.13) 0.23 (0.14) 0.25 (0.12) 0.28 (0.13)

PM2.5

0 to 6 days 7.79 (2.75) 7.66 (2.63) 8.01(3.58) 7.90 (2.34)

7 to 13 days 8.33 (2.67) 7.72 (2.51) 9.58 (2.54) 8.80 (2.79)

14 to 20 day 8.45 (3.05) 8.16 (3.4) 8.90 (3.12) 8.79 (1.84)

21 to 27 days 8.15 (3.50) 7.86 (3.66) 8.62 (3.6) 8.55 (2.99)

Ultrafine particles

0 to 6 days 4611.46 (1120.64) 4594.73 (1026.12) 4890.24 (1512.57) 4365.42 (909.43)

7 to 13 days 4835.69 (1221.7) 4815.96 (1163.35) 5186.72 (1646.82) 4619.66 (1000.51)

14 to 20 days 5262.77 (1410.88) 5208.64 (1473.39) 5703.08 (1534.16) 5110.57 (1154.33)

21 to 27 days 5161.78 (1595.44) 5276.92 (1604.38) 5309.07 (1799.33) 4753.53 (1425.86)
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Distinct patterns of gene expression within the highest variance genes correspond to infec‑
tion type and ambient air pollution.  We performed an initial exploratory analysis focusing on the 
150 genes with the highest variance across samples. In this analysis, we observed infection specific differences 
in gene expression (Fig. 2). Based on the hierarchical clustering of genes, we defined 7 distinct gene clusters. 
One cluster (#2) showed clear expression differences between infections, as previously shown by Suarez et al.22. 
Though air pollution modeling was not performed in this exploratory portion of the analysis, increased expres-
sion of genes in this cluster visually corresponded to high pollution levels among the viral infection samples. 
In contrast, elevated expression of these genes in patients with bacterial or combined infection did not clearly 
correspond to high pollution levels.

Within a specific type of respiratory infection, the expression levels were not consistent across all high vari-
ance genes. We observed a higher gene expression corresponding to the highest air pollution concentrations in 
Cluster #2 for viral infection compared with Clusters #3–6. While other gene clusters captured consistent expres-
sion patterns across subjects, these differences were not clearly associated with either infection or pollutant levels.

In the heatmap of the 150 most variable genes (Fig. 2), the 38 individual genes within Cluster #2, had the 
highest gene expression within the viral infection group and included a variety of immune related genes (Sup-
plemental Table S2 online). For example, there were multiple interferon induced protein coding genes including 
IFI44L, OAS1 and MX1. IFI27, IFIT1–3 and RSAD2 participate in Interferon gamma signaling and the innate 
immune response. OAS2 also participates in the innate immune response by encoding for the 2-5A synthetase 
family. The HERC5 gene is upregulated by endothelial cell inflammation. This result suggests exposure to par-
ticulate air pollutants in the week prior to hospitalization with RVI may be associated with a more exuberant 
immune and inflammatory response.

Transcriptomic analysis quantifies the associations between the expression of individual 
genes and both infection type and ambient air pollution.  To quantify the association between 
expression of individual genes and air pollution measurements prior to hospitalization for individuals with a 
respiratory infection, we performed a LIMMA analysis controlling for sex and infection type (see “Methods” for 
details). This analysis was performed on all measured genes.

Few individual genes associated with changes in air pollution.  We then analyzed the association between air 
pollution and gene expression in the overall study population including all infection types. The average effect 
of each 1 µg/m3 increase in DC in the prior 7 days, regardless of infection type, is a log2-fold increase of 3.5 for 
RNF14 and 2.4 for UBE2F, two genes participating in antigen presenting cell pathways (Supplemental Table S3 
online). Other notable genes upregulated in association with increased concentrations of DC at the 7-day lag 
period include a 3.1 log2-foldchange increase in MAP2K3 (TLR signaling) and 2.9 log2-fold change increase in 
ADORA1 (pro-inflammatory monocyte activation). Two genes involved in hemoglobin synthesis (HMBS) and 
blood cell size (TMCC2) were also upregulated in association with increased DC concentrations in the seven 
days prior to hospitalization. No significant changes in genes were associated with increased concentrations of 
PM2.5, BC, UFP or AMP. To further investigate these putative associations between gene expression and air pol-
lution, as well as others not readily apparent from the unsupervised and individual gene analysis, we completed 
a pathway analysis using the differentially expressed genes group by clusters.

Differential expression of viral versus bacterial infection to independently replicate baseline expression differences 
between RVI and RBI (not factoring in air pollutants).  The top genes in the individual LIMMA analyses that 
were differentially expressed in peripheral blood samples of patients hospitalized with viral infection vs. bacte-
rial (baseline in the model) infection were ISG15, TIMM10, IFI27, IFI44L and OAS2 (Supplemental Table S4 
online). These genes were consistently differentially expressed regardless of which pollutant was included in the 
model. For consistency, we specifically presented the gene expression values within the same group of partici-
pants with data for the pollutant DC at the 0–6 lag period (as in the above pollution focused individual gene 
analysis), There was a log2-fold increase of 3.3 for ISG15 and 2.2 for TIMM10, two genes participating in anti-
gen presenting cell pathways. IFI 27, IFI44 (and its paralogIFI44L), are part of the interferon induced response 
to RVI and were observed to have a log2-fold increase in the 3-4 range. Finally, OAS-2, a part of the innate 
immune system, was observed to have a 2.5 log2-fold increase. Three of the genes (IFI44, OAS2 and IFI27) that 
we observed in this replication effort (Table S4) matched the classifier genes found in the original Suarez et al.22 
study. Though we control for infection type in our model considering air pollution, highlighting the genes that 
are classifiers distinguishing RBI from RVI (independent of pollution) is helpful to understand whether or not 
there is overlap between the genes that are associated with air pollution in patients with respiratory infection and 
the genes that are associated with respiratory infection alone (without accounting for pollution).

Pathway analysis to characterize the broad areas of gene expression associated with different air pollutants in 
patients with all types of respiratory infection together and targeted infection specific heatmaps.  With a signal 
appearing between high concentrations of air pollution and gene expression within Fig. 2, we then identified 
specific gene pathways that were associated with modelled increases in air pollution concentrations across all 
infections (Table 3 and Supplemental Tables S5–S9). When analyzing the association between air pollutants and 
gene pathways using the CAMERA method, we observed several broad pathways with implications on innate 
immunity. Then, given the differences in gene expression across infections, we constructed heatmaps of specific 
pathways of interest for infection specific changes at multiple pollution lags (Supplemental Fig. S2–S12 Online).
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Figure 2.   Heat map of the 150 highest variance genes and corresponding air pollution concentrations, 
stratified by type of respiratory infection and divided by participant (Columns) and gene cluster (Rows 1–7). 
The selected expression values were centered and scaled to have mean zero and variance one. The dendrograms 
were produced using hierarchical clustering on either genes or samples using Euclidean distance and complete 
linkage. A qualitative threshold (dotted line) was selected to define gene clusters based on the hierarchical 
clustering.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19436  | https://doi.org/10.1038/s41598-021-98729-8

www.nature.com/scientificreports/

Table 3.   Pattern of association between gene pathways and increased concentrations of multiple particulate 
matter pollutants at multiple lag times (bold-upregulated, italics-downregulated).

Gene pathway name BC (lag) DC (lag) AMP (lag) PM2.5 (lag) UFP (lag)

Establishment_of_protein_localization_to_endoplasmic_reticulum 21–27 7–13 0–6 7–13 14–20

Ribosomal_subunit 21–27 7–13 0–6 7–13 14–20

Structural_constituent_of_ribosome 21–27 7–13 0–6 7–13 14–20

Specific_granule_lumen 21–27 0–6 0–6 0–6

Cotranslational_protein_targeting_to_membrane 21–27 7–13 0–6 14–20

Cytosolic_large_ribosomal_subunit 21–27 7–13 0–6 7–13

Cytosolic_ribosome 21–27 7–13 0–6 14–20

Ferric_iron_binding 0–6 21–27 21–27 0–6

Ferrous_iron_binding 0–6 21–27 21–27 0–6

Large_ribosomal_subunit 21–27 7–13 0–6 14–20

Nuclear_transcribed_mrna_catabolic_process_nonsense_mediated_decay 21–27 7–13 0–6 14–20

Protein_localization_to_endoplasmic_reticulum 21–27 7–13 0–6 14–20

Protoporphyrinogen_Ix_biosynthetic_process 0–6 21–27 0–6 0–6

Protoporphyrinogen_Ix_metabolic_process 0–6 21–27 0–6 0–6

Ribosome 21–27 7–13 0–6 14–20

Translational_initiation 21–27 7–13 0–6 14–20

Catalytic_step_2_spliceosome 0–6 21–27 14–20

Mitochondrial_translation 0–6 21–27 7–13

U2_type_catalytic_step_2_spliceosome 0–6 21–27 7–13

U2_type_spliceosomal_complex 0–6 21–27 7–13

Nuclear_transcribed_mrna_catabolic_process 21–27 0–6 14–20

Translation_preinitiation_complex 14–20 0–6 7–13

Specific_granule 0–6 0–6 0–6

Small_ribosomal_subunit 21–27 7–13 14–20

Cytoplasmic_translation 21–27 14–20 14–20

Cytosolic_small_ribosomal_subunit 21–27 7–13 14–20

Protein_targeting_to_membrane 21–27 7–13 14–20

Viral_gene_expression 21–27 7–13 14–20

Cytoplasmic_side_of_rough_endoplasmic_reticulum_membrane 7–13 7–13

General_transcription_initiation_factor_activity 21–27 21–27

Mitochondrial_gene_expression 21–27 7–13

Myeloid_leukocyte_mediated_immunity 0–6 7–13

Positive_regulation_of_double_strand_break_repair_via_homologous_
recombination 21–27 21–27

Secretory_granule_membrane 0–6 7–13

Specific_granule_membrane 0–6 0–6

Superoxide_anion_generation 0–6 7–13

Tertiary_granule 0–6 7–13

Autolysosome 21–27 21–27

Oxidoreductase_activity_oxidizing_metal_ions 21–27 21–27

Oxidoreductase_activity_oxidizing_metal_ions_oxygen_as_acceptor 21–27 21–27

Regulation_of_ryanodine_sensitive_calcium_release_channel_activity 21–27 21–27

T_cell_receptor_binding 14–20 14–20

Mda_5_signaling_pathway 0–6 0–6

Polysomal_ribosome 21–27 14–20

Polysome 21–27 21–27

Cajal_body 0–6 14–20

Lewy_body 0–6 0–6

Porphyrin_containing_compound_metabolic_process 0–6 0–6

Regulation_of_mitochondrial_electron_transport_nadh_to_ubiquinone 0–6 0–6

Spectrin_associated_cytoskeleton 0–6 0–6

Hemoglobin_metabolic_process 7–13 0–6

Purine_deoxyribonucleotide_binding 0–6 0–6
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Delta‑C (DC).  Multiple different gene pathways associated with red blood cell synthesis and iron handling 
were significantly upregulated in association with increases in DC concentrations at all lag periods (Table 3 and 
Supplemental Table S5 online). Gene pathways associated with endoplasmic reticulum activity (protein folding 
essential for cytokine production in the immune system) were also upregulated by increased DC concentrations 
at the 7–13, 14–20 and, 21–28 lag periods while increased concentrations of DC at the 7–13 and 14–20 lag peri-
ods were associated with upregulation of a viral replication pathway.

In the infection specific heatmaps, DC was observed to have different patterns of expression in the iron 
homeostasis pathway (Protoporphyrinogen IX Biosynthetic Process) when comparing infections at the 0–6 and 
21–27 lag times (Supplemental Figs. S2–S7 online). While the highest gene expression in iron homeostasis was 
observed in patients with bacterial or viral infection at the highest concentrations of DC, the combined infec-
tion group displayed a mixed to decreased expression. There was no clear pattern of gene expression along the 
pollution concentration gradient when comparing infection type within an endoplasmic reticulum or viral gene 
expression pathway.

Black carbon (BC).  Increased concentrations of BC were associated with upregulation of a combination of anti-
viral pathways and pro-viral pathways in the 0–13 day lag periods (Table 3 and Supplemental Table S6 online). 
In the 14–20 day lag period, several immune pathways were significantly down regulated in association with a 
one-unit increase in BC concentrations. Differences in gene expression of the type 1 interferon pathway were 
observed between infection types for BC (Fig. 3). For BC at the 0–6 lag period, the highest gene expression was 
found in Cluster #5 of genes for patients with RVI and the lowest expression was observed in this cluster for 
patients with respiratory bacterial infection (RBI). Patients with RVI appeared to be driving the positive associa-
tion between BC and the type 1 interferon pathway.

PM2.5.  In the 7–20 day lag periods, multiple ribosomal/ER related pathways were downregulated. Iron binding 
pathways were upregulated in the 20–27 day lag period and iron homeostasis pathways were also upregulated at 
all lag times (Table 3 and Supplemental Table S7 online).

For PM2.5 at the 0–6 and 14–20 day lag periods, the highest expression of iron homeostasis genes was observed 
within patients with bacterial infection (Supplemental Figs. S8–S9 online). At the 14–20 lag days for PM2.5, 
patients with RVI had the lowest gene expression within the iron homeostasis pathways. In patients with com-
bined infection, low levels of gene expression in iron homeostasis was also observed at the 0–6 lag time for the 
highest concentrations of PM2.5. These findings indicate that the patients with RBI were driving the signal in the 
combined analysis of all infections.

Ultrafine particle (UFP).  A one-unit increase in UFP was associated with down regulation of several immune 
related pathways at the 7–13 day lag period, including neutrophil and myeloid activation and regulation of leu-
kocyte degranulation (Table 3 and Supplemental Table S8 online). In the 0–13 day lag period, increased concen-
trations of UFP were associated with upregulation of both iron binding and heme related iron pathways. Finally, 
we observed upregulation of ER related pathways in the 14–27 lag time associated with a one unit increase in 
UFP concentrations.

In the infection specific heatmaps for UFP at the 14–20 and 21–27 lag time, we observed the highest expres-
sion of viral gene expression pathway genes in patients with viral infection, but there was no clear pattern within 
bacterial or combined infection (Supplemental Figs. S10–S11 online). While the infection specific heatmaps 
showed similar expression pattern for iron homeostasis across different infections, there were distinct expression 
patterns for immune specific (highest expression for viral infection) and protein folding pathways (highest for 
combined infection) when comparing infections.

Accumulation mode particles (AMP).  One unit increases in AMP were associated with upregulation of multi-
ple ER associated pathways in the 0–6 lag period and upregulation of iron homeostasis related pathways at the 
21–27 day lag period. An increased concentration of AMP was associated with downregulation of a myeloid 
leukocyte pathway at the 0–6 lag time (Table 3 and Supplemental Table S9 online).

In the infection specific heatmaps for AMP at the 0–6 lag period, we observed the highest level of expres-
sion in the mRNA catabolic pathway in patients with bacterial infection and lowest levels in patients with viral 
infection (Supplemental Fig. S12 online).

Summary of the  comparison between gene pathway expression patterns across pollut‑
ants.  The pathways associated with all pollutants included genes related to the upregulation of endoplas-
mic reticulum related pathways (except for downregulation seen with PM2.5), including ribosomal synthesis 
(Table 3). Iron binding and hemoglobin related pathways were also commonly affected by all pollutants except 
for BC. Out of all the pollutants, BC and UFP were associated with the greatest number of immune and viral 
related gene pathways.

When broadly visualizing the patterns of relative gene expression divided by type of pollution, the most 
distinct differences were observed when comparing RVI and RBI. Combined infection commonly displayed a 
mixed (indeterminate) pattern. The strongest gene expression differences when comparing between infections 
occurred with BC at the 0–6 lag period for Type 1 interferon (Fig. 3). These differences associated with BC dis-
played decreased expression in the patients with bacterial infection and higher expression in patients with viral 
infection. One of the most consistent patterns of discordance across multiple pollutants was observed within an 
iron homeostasis pathway. The highest concentrations of pollutants including AMP, DC and UFP corresponded 
to higher expression of the middle to lower clusters of genes at the 0–6 and 21–27 lag periods for both viral 



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19436  | https://doi.org/10.1038/s41598-021-98729-8

www.nature.com/scientificreports/

and bacterial infection, but the relationship was inconsistent in the combined infection group. In the infection 
specific analysis, there were also multiple examples of low gene expression, which appeared to be independent 
of air pollution levels.

Targeted exploration of individual genes within the Interferon pathway..  Given the contrast 
between the gene expression patterns corresponding to the highest pollutant concentrations among the types of 
infection within Cluster #5 of the Response to Type 1 Interferon pathway (Fig. 3), we examined the 18 individual 

Figure 3.   Infection specific heatmap of Type 1 Interferon pathway with corresponding black carbon 
concentrations divided by participant (Columns) and Cluster (Rows 1–5). Data were processed and 
dendrograms generated as in Fig. 2.
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genes presents within this cluster (Table 4). The majority of the genes in this cluster were related to the immune 
response to infection including OAS-1/3, IFI44L, HLA-A and HLA-DRB-1/4. Genes related to ribosomal activ-
ity (RPS4Y-1) and heme biosynthesis (ALAS2) were also present in this cluster. This review of individual genes 
highlights the overlap between infection related pathways (Interferon) and the ribosomal and heme related 
genes. OAS2 and IFI44L were also found to be expressed in a high level in patients with RVI in the analysis of 
150 highest variance genes (Fig. 2). The gene expression in the other clusters in the heatmap did not appear to 
correspond to pollution levels when comparing across infection types. The genes in Cluster #2, for example, con-
tains a variety of genes related to acute phase reaction (ORM1) viral replication (IFIT1) and granulocyte regula-
tion (CD17, CLC). However, Cluster #2 also has genes that are not directly related to immunity including genes 
related to collagen formation (COL9A2) and the urea cycle (ARG1). In summary, the cluster which displays the 
greatest infection specific differences in gene expression corresponding to high pollutant concentrations (Clus-
ter #5) has a higher proportion of immune related genes than the more diversely populated Cluster #2.

Descriptions of additional sensitivity analysis on participants who are smokers (Supplemental Table S10 
online) and highlighting individual genes present in the aforementioned significant gene pathways (Supplemental 
Tables S11–S15 online) are provided in the supplemental information.

Discussion
In patients hospitalized with viral, bacterial and combined infection, we observed associations between gene 
expression and air pollution exposure in the 1 to 4 weeks prior to hospitalization, including gene pathways related 
to immunity, protein folding and iron homeostasis.

As hypothesized, combustion related air pollutants including DC (marker of wood burning) and BC (marker 
of traffic pollution) were associated with changes in gene expression of multiple pathways related to the immune 
response to respiratory infection. All pollutants were associated with genes involved in protein folding, and all 
but BC were associated with key iron homeostasis pathways. Of all pollutants, BC was associated with upregula-
tion of the largest number of immune specific pathways in the week prior to infection. In the infection specific 
exploration of selected pathways, we observed similar patterns of gene expression with the overall pathway 
analysis at the early lag times (0–6 days) but observed different patterns at the later lag times. There appeared to 
be infection specific patterns of gene expression when comparing patients with RVI, RBI and combined respira-
tory infection. Overall, this analysis suggests that the mechanistic effects of air pollution on the pathogenesis of 
respiratory infection may be pollutant, timing, and infection specific.

Discerning the effect of air pollution on the normal immune response to respiratory infection is made more 
difficult by limitations of our use of an epidemiological design, and by the overlapping effects of both air pollu-
tion and respiratory infection on the human immune response.

To date, it is not clear by what mechanism(s) short term air pollution exposures contribute to diagnosed 
respiratory infection. Independent of air pollution exposure, RVIs can disrupt epithelial barriers23–25, activate 
an inflammatory cascade mediated by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)26, 
and activate key antiviral proteins, including Type I (e.g. interferon beta [IFN-β]) and Type II (e.g. interferon 
gamma [IFN-γ]) interferons)27,28.

Differentiating RVI from RBI using gene expression is an area of active research29. In a study by Tsalik et al.29, 
three externally validated, well performing (AUC 0.90–0.99), host-response classifiers were described for non-
infectious disease, bacterial and viral respiratory infection respectively. Though direct comparison to genes in 
our study was limited, the overall theme of distinct gene profiles for viral and bacterial infection and a variable 
(heterogeneous) pattern for combined viral and bacterial infection was similar to the patterns observed in the 
exploratory heatmap (without pollution modeling) of our study (Fig. 2). In another study focused on individual 
genes, found that a single gene (IFI27) is able to differentiate influenza from RBI30. IFI27 was also identified in 

Table 4.   Genes present within clusters 2 and 5 of the type 1 interferon/ black carbon 0–6 day lag heatmap.

Cluster 2 Cluster 5

ALAS2 ALAS2

ARG1 BPI

CD177 HLA-A

CLC HLA-DRB1 and HLA-DRB4

COL9A2 IFI44

GBP1 IFI44L

HP IL1R2

IFI6 MAP2K3

IFIT1 NA

IGLL1 OAS2 and OAS3

LOC644936 RETN

LY6E RPS4Y1

NA SPATS2L

ORM1 TUBB2A

XAF1 VAV3
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the Suarez study22 as a classifier of RBI vs. RVI and was observed in our brief replication analysis Supplemental 
Table S4. While distinct gene expression can exist between RVI and RBI, air pollution itself can also illicit a strong 
immune response independent of respiratory infection.

Independent of respiratory infection, air pollution exposure is known to broadly lead to immune dysregula-
tion in cell and animal models through pro-inflammatory changes to lung epithelia, dysregulation of cell sign-
aling pathways and direct effects on immune cells including macrophages, dendritic cells and granulocytes31. 
Specifically, in response to diesel exhaust particles, a NF-κB mediated inflammatory cascade is thought to occur 
within the lung epithelium10. This response has the potential to disrupt the tight junctions between epithelial 
cells, thereby increasing the risk for viral or bacterial penetration and subsequent infection9,11. We did not 
observe many inflammatory pathways associated with air pollution and only observed two individual inflam-
matory related genes in our study. ADORA1 participates in the activation of monocytes, which leads to a pro-
inflammatory response. HERC5 was another example of a gene upregulated by endothelial inflammation that 
was differentially expressed between types of infections in our study. The paucity of observed inflammatory 
changes may be related to the overall low concentrations of ambient air pollution in the Rochester area compared 
to other more heavily polluted areas.

In terms of immune effects, decreased levels of IFN-γ (important for macrophage activation) were observed 
in the peripheral blood of mice exposed to traffic pollution in China12, and in the peripheral blood of humans 
exposed to diesel exhaust32. Further research has also observed dysregulation of the epithelial cell junction, res-
piratory microbiome and cytokine response as additional factors increasing pathogenic virulence in the setting 
of PM exposure33. Our analysis suggests that while BC is associated with upregulation of type 1 interferon related 
pathway in the two weeks prior to infection, there may also be a component of immune suppression associated 
with exposure to traffic pollution in the later lag periods. Specifically, in the pathway analysis (Table 3), BC was 
associated with upregulation with numerous immune related pathways at the 0–6 lag period and downregula-
tion of natural killer cell activity and antigen processing in the 14–20 day lag period. BC may have unique health 
effects when compared to other PM due to its physical shape as a chain aggregate particle. This shape provides 
a large surface area and concavity between intersecting spheres (most other particles are convex/spherical) that 
improves the ability for BC to serve as a transport vector for other chemicals or possibly infectious organisms 
into the body34. UFP also was associated with upregulation of a viral related pathway at the 0–6 lag day period 
and suppression of multiple immune related pathways at the 7–13 lag day lag period. Though speculative, these 
finding suggest that for BC and UFP, an inflection point may exist where the effects of air pollution alone (lag 
days 13–28) are then comingled with the effect of acute infection during the incubation period in the 7 days 
preceding infection. In contrast to BC and UFP, PM2.5 was associated with suppression of multiple immune 
related pathways at the 0–6 lag day period but had no associations with immune pathways at later lag periods. 
Though the etiology of the gene suppression from PM2.5 is not clear, it may suggest that effects on immunity may 
be pollutant specific in addition to being timing specific. The relative importance of the directionality and timing 
of these immune changes for specific pollutants (and considering the composition of pollutants like PM2.5) in 
the pathogenesis of respiratory infection deserves further study in a prospective manner.

Despite our study population preceding the current COVID-19 pandemic, our participants had a high preva-
lence of several comorbidities that are risk factors to severe COVID-19 illness including diabetes, COPD, smoking 
and obesity35. A deficiency in the type 1 interferon response has been hypothesized to be a risk factor for a severe 
clinical course of COVID-1936. Our study observed a difference in type 1 interferon expression when comparing 
RVI (high expression) and RBI (low expression) in the week prior to hospitalization (Fig. 3). The most distinct 
differences in gene expression for type 1 interferon between RVI and RBI corresponded to the highest concen-
trations of black carbon. We observed that one cluster of genes within the Type 1 Interferon pathway appeared 
to drive the association between air pollution and gene expression. Determining the potential gene pathways 
and individual genes involved in the air pollution/respiratory infection association is a key area of research for 
the current and future pandemics. A further benefit of improved knowledge of the risk of specific air pollutants 
and respiratory infections could be the ability to make real time policy changes (e.g. diesel traffic modifications) 
during a pandemic to reduce pathogen virulence.

In addition to the immune specific pathways, there were two additional general pathways broadly related to 
protein folding and iron homeostasis, which were associated with changes in air pollution. All pollutants were 
associated with three pathways related to the endoplasmic reticulum (ER), an organelle central to protein syn-
thesis (e.g. cytokines or other immune proteins) and transport in the body37. (Table 3) In a prior in vitro study 
of PM exposure to bronchial epithelial cells, PM increased stress on the ER (upregulation) that lead to a delete-
rious unfolded protein response (UPR)38. Influenza has also been observed to cause similar dysfunction in the 
ER39. This can impair the function of cells central to innate immunity in the lung including bronchial epithelial 
cells40, and also has the potential to lead to dysregulation in the synthesis and transport of other immune related 
proteins. Aside from AMP, all other pollutant/ER related pathway associated were observed at the 7–27 day lag 
period, with no association observed in the 0–6 day lag period. This may suggest that the ER (protein folding) 
related dysregulation precedes the time point of acute infection for infections with incubation periods under 
7 days (e.g. Influenza)41. While all other pollutants led to upregulation of ER related pathways, PM2.5 was associ-
ated with suppression of the ER pathways. While both upregulation and suppression could lead to dysregulation, 
upregulation may be more detrimental due to the risk of the UPR.

Iron homeostasis plays an important role in the clinical course of RBI42, and is increasingly recognized as an 
important factor in RVI43 as well. Air pollution is known to induce a relative iron deficiency through dysregu-
lation of iron homeostasis through mechanisms of chelation and/or sequestration44. Aside from BC, all other 
pollutants were observed to upregulate multiple pathways of iron homeostasis (Table 3). The association between 
multiple pollutants and an upregulation of iron related pathways is consistent with the relative iron deficient state 
induced by air pollution. Intracellular iron deficiency can lead to an increased oxidative state and inflammation 
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within the host. Whether the observed changes in iron homeostasis are protective (immune priming), deleteri-
ous (immunosuppressive), or related to changes in the proportion of blood cells remains unclear. The effect of 
air pollution on iron homeostasis pathways in viral infection is deserving of further study.

Limitations.  Our study results should be interpreted in light of several limitations. First, our study focused 
on a small group of severely ill patients requiring hospitalization, though the final specific strata of severity 
within the hospital were not recorded as participants were enrolled upon hospital arrival. Our cohort was also 
older with multiple comorbidities, potentially limiting the generalizability to younger patients with respiratory 
infection. Second, the lack of a control population limited the pathway and LIMMA analysis to comparisons 
between types of infection. Furthermore, in the use of alternative gene-list based gene set enrichment algo-
rithms, such as Enricher45,46, was not possible in the study due to the relatively small number of marginally 
statistically significant genes identified. Third, this analysis was not able to correct for the blood cell proportions 
in the peripheral whole blood of our samples. In theory the lack of inclusion of blood cell proportions should 
only minimally change the magnitude of effect estimates and would result in a larger standard error and reduced 
statistical significance. Fourth, the epidemiological design does not allow for causal link between air pollution 
and immune response to respiratory infection. Fifth, as there was no external validation with gene sets outside 
of our study, the generalizability of our findings are reduced. Sixth, there was likely an element of exposure mis-
classification given central site monitor estimated pollution, which likely reduced the magnitude of the observed 
effects. Finally, Rochester, NY has a relatively low average concentration of PM air pollution so generalizability to 
areas of higher pollution may be limited if dose thresholds exist in the pathogenic response to PM. Future studies 
can improve exposure assessment by using land use regression techniques, account for multipollutant mixtures 
and improve overall generalizability by including patients with mild infection and non-infected controls.

Conclusions
Overall, this epidemiological study suggests that combustion related pollution, particularly BC, is associated 
with changes in gene expression within innate immune pathways. Increased concentrations in the majority of 
pollutants also appear to correspond to changes in expression to protein folding and iron homeostasis. Distinct 
from other pollutants, PM2.5 was associated with downregulation of immune and protein folding pathways. The 
relatively low pollution in the study region may explain the lack of inflammatory changes accompanying the 
changes in the immune pathways. Future controlled exposure studies informed by epidemiological studies are 
needed to further explore the relationship between inflammatory and immune responses to particulate air pol-
lution in patients with respiratory infection.

Methods
We used existing data from 111 patients originally enrolled in the study by Falsey et al.47, who underwent 
transcriptional profiling as detailed in the study by Suarez et al.22 included adults over the age of 21 years with 
symptoms compatible with acute respiratory tract infection admitted through the emergency department at 
Rochester General Hospital (RGH), Rochester, NY from 2008 to 2011. As detailed in Falsey et al.47, each patient 
was assigned an admitting diagnosis by a pulmonary specialist after examination of each subject and review of 
laboratory, microbiologic and radiographic data. All ethical approvals, guidelines and consent were provided in 
this previous study. Subjects had comprehensive microbiologic testing and cases were adjudicated by specialists as 
viral alone, bacterial alone, or mixed viral-bacterial infection. From this population, 1–3 ml of peripheral whole 
blood RNA was collected from 118 patients in Tempus tubes and hybridized using an Illumina Human HT-12 
v4 BeadChip kit. Transcripts from the Illumina GenomeStudio based analysis were included if they were present 
in 10% or more of the samples and if they exhibited a minimum of a twofold expression change. As 7 of the 118 
patients had missing pollution data, we analyzed the data of 111 patients who had a transcriptional analysis of 
peripheral blood performed in our current study on the association between air pollution and gene expression.

Air pollution data.  Ambient air pollution concentrations were measured at a central site monitor in Roch-
ester, NY, and all patients living in Monroe County, NY were assigned pollutant concentrations from this moni-
tor. The daily ambient air pollutant concentrations in the 28 days prior to the date of each participant’s hospi-
tal admission were matched to each participant, as an estimate of the patient’s air pollution exposure in those 
28 days. Specifically, measurements of particle number concentrations in the size range of 10–500 nm are made 
continuously and sequentially at the New York State Department of Environmental Conservation (NYS DEC) 
site in Rochester, NY48. From 2004 to the present, measurements have been made at the NYS DEC primary site 
(latitude 43°09′56″ N, longitude 77°33′15″ W) on the eastside of Rochester, NY. This sampling site is close to 
two major interstates (I-490 and I-590) as well as NY route 96, a major route carrying traffic traveling to and 
from downtown Rochester. Hourly PM2.5 mass, wind speed and wind direction, ambient temperature and rela-
tive humidity are also measured at the above-mentioned site. Size distribution measurements are made using 
a scanning mobility particle sizer (SMPS, TSI Inc.) system consisting of an electrostatic classifier (TSI model 
3071), with an impactor having an orifice size of 0.0457 cm, an 85Kr aerosol neutralizer (TSI model 3077), and a 
condensation particle counter (CPC; TSI model 3010). The size range bounds are 10.4 nm (lower) and 0.542 µm 
(upper) leading to measurement of mid-point particle sizes ranging from 11.1 nm to 0.47 µm (32 channels per 
decade) at a total scan time of 5 min per sample. Routine maintenance such as calibrating rates is performed 
once a week to ensure that the system is functioning properly. PM2.5 is measured with a TEOM (model 1400ab, 
Thermo Fisher Scientific Inc., USA). Black carbon (BC) was measured with a 2-wavelength aethalometer. Delta-
C (DC) is the difference between BC measured at 370 and 880 nm and has been shown to be a marker for bio-
mass burning49. Pollution measurements were taken from Nov 1st, 2008 to May 31st, 2011.
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Microarray data acquisition and processing.  This dataset, GSE60244 on the Gene Expression Omni-
bus, contains background corrected, non-normalized whole-blood genome data from microarrays run on the 
Illumina HumanHT-12 V4.0 expression BeadChip platform. The reported detection p-values were used to infer 
the mean and variance of the negative control probe intensities in order to perform background correction 
using the normal exponential convolution model. This method prevents negative values that arise from sub-
traction-based background correction. Quantile normalization was used after background correction in order 
to minimize variation between arrays. Specifically, we used the neqc function in LIMMA to perform adaptive 
background correction based on each array in order to account for background intensity around each feature 
and control for variability between arrays. The neqc function uses both negative and positive controls for nor-
malization 50. The probes were matched to gene names using the annotation package IluminaHumanV4 51. Uni-
dentified and non-detected genes were removed.

Statistics.  Exploratory analysis.  After preprocessing, the top 150 high variance genes were selected for 
initial exploratory analyses. The selected expression values were centered and scaled to have mean zero and 
variance one. We performed hierarchical clustering with Euclidean distance and complete linkage on both the 
genes and samples. The resulting sample dendrogram was qualitatively compared to ambient air pollution levels 
in the weeks prior to infection diagnosis obtained from a prior study22. Finally, the ambient pollution values for 
each patient were overlaid from the day 0 to day 6 time period preceding diagnosis of infection. The program 
ComplexHeatmap was used to generate the heatmaps in this study52.

Individual gene analysis.  The Linear Models for MicroArray (LIMMA) package53 in R (version 4.03)54 
was used to test hypotheses about the effect of ambient air pollution levels in the weeks prior to infection diag-
nosis on patients’ gene expression using all 47,231 probes available in the microarray platform.

Each of the five pollutant exposures was tested individually by fitting a separate linear model for each of the 
four exposure time intervals: 0–6 days, 7–13 days, 14–20 days, and 21–27 days prior to date of diagnosis. This 
resulted in fitting a total of 20 models of the following form:

Here Yij is the gene expression in subject i for gene probe j. Since no pollution exposure data was available 
for the gene expression control group, the bacterial infection group was set as the baseline category; therefore, 
the difference in expected gene expression between viral and bacterial infection and between coinfection and 
bacterial infection are β1j and β2j , respectively. The difference in expected gene expression between female and 
male subjects is β3j . Sex was selected as a covariate of interest as it was predictive of respiratory viral infection and 
had a potential effect on gene expression. None of the other covariates tested, including race, smoking, COPD, 
diabetes, congestive heart failure, white blood cell count, oxygen requirement, chronic renal failure, statin and 
obesity were predictive of respiratory viral infection and were therefore not included in the model. Ambient pol-
lutant levels measured for AMP, PM 2.5, UFP, DC, and BC in four different time lags are each used separately as 
the pollution value xpollutanti  , and β4j is the change in expected gene expression for a one unit increase in a given 
pollutant. Standard errors for these coefficients were calculated using the empirical Bayes method55 central to the 
LIMMA method. Differential expression was determined by using a false discovery rate (FDR) threshold of 0.1.

Pathway analysis.  In order to test the effect of pollutants on gene pathways we used the CAMERA 
algorithm56. CAMERA implements a competitive gene set test comparing each pathway against all other genes 
not in the pathway. Such tests focus on identifying the most important biological processes relative to all other 
processes. Gene-wise moderated t-statistics are used as in LIMMA, but here the goal is to determine if the mean 
of the gene-wise statistics differ between the pathway of interest and all other genes. The key feature of CAMERA 
is that it accounts for inter-gene correlation in order to better control type I error. In this work, we used a false 
discovery rate threshold of 0.1.

Pathway definitions came from the Molecular Signatures Database version 7.1 GO: Gene Ontology gene sets 
listing of 10,192 pathways. The pathways defined here are derived from the Gene Ontology (GO) resource, and 
they were compiled into R data files which mapped probes to gene symbols, which were subsequently used to 
define pathway membership. We cross referenced the significant LIMMA results against the significant CAMERA 
results to limit our scope to only the pathways found significant in CAMERA which also contained individual 
genes found to be significant in the LIMMA analysis. From this subset of 448 pathways, we chose those known 
to be associated with infection and clustered those gene sets as in the unsupervised analysis to visually examine 
trends across patients and expression levels compared with pollutant levels.
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